2009-10-17 福建公务员考试网
概念
(1)最大公约数:如果有一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数。几个自然数公有的约数,叫做这几个自然数的公约数。公约数中最大的一个公约数,称为这几个自然数的最大公约数。
(2)最小公倍数:如果有一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数。几个自然数公有的倍数,叫做这几个自然数的公倍数。公约数中最小的一个大于零的公倍数,称为这几个自然数的最小公倍数。
这类概念的应用一般在星期日期、余数相关等问题中,考生不但要熟练求最大公约数、最小公倍数的方法,还要学会在特定的情境中灵活运用。
例题讲解
例题1:有两个两位数,这两个两位数的最大公约数与最小公倍数的和是91,最小公倍数是最大公约数的12倍,求这较大的数是多少?
A.42 B.38 C.36 D.28
【答案】D。
【解析】这道例题非常清晰的点明了主旨,就是最大公约数与最小公倍数问题,那么我们可以根据定义来解决。这两个数的最大公约数是91÷(12+1)=7,最小公倍数是7×12=84,故两数应为21和28。
例题2:三根铁丝,长度分别是120厘米、180厘米、300厘米,现在要把它们截成相等的小段,每段都不能有剩余,那么最少可截成多少段?
A.8 B.9 C.10 D.11
【答案】C。
【解析】这道例题中隐含了最大公约数的关系。“截成相等的小段”,即为求三数的公约数,“最少可截成多少段”,即为求最大公约数。每小段的长度是120、180、300的约数,也是120、180和300的公约数。120、180和300的最大公约数是60,所以每小段的长度最大是 60厘米,一共可截成120÷60+180÷60+300÷60=10段。
[page]
例题3:一个小于200的数,除以24或36都有余数16,则这个数是( )
A.52 B.78 C.88 D.156
【答案】C。
【解析】这道例题中隐含了最小公倍数的关系。“除以24或36都有余数16”,说明此数减去16,即为24和36的公倍数。24和36的最小公倍数为72,则此数应为72+16=88。
特点小结
1.在互质的几个数中,1是这些互质的数的公约数。
2.约数:如果数A能被数B整除(B不为0),A就叫做B的倍数,B就叫做A的约数(或因数),倍数和约数是相互依存的。
公约数:几个数公有的约数叫做这几个数的公约数。
一个数的约数的个数是有限的,其中最小的是1,最大的是它本身。
例: 在2、4、6中,2就是2,4,6的最大公约数
3.几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。一个数的倍数是无限的,几个数的公倍数也是无限的。利用分解质因数的方法可以求出两个数的最小公倍数。
例:求6和8的最小公倍数。
6=2×3,8=2×4
所以6和8的最小公倍数是:2×3×4=24